Nitrogen Dioxide

You are here: EPA Home Air & Radiation Six Common Pollutants Nitrogen Dioxide Health

Health

Current scientific evidence links short-term NO$_2$ exposures, ranging from 30 minutes to 24 hours, with adverse respiratory effects including airway inflammation in healthy people and increased respiratory symptoms in people with asthma.

Also, studies show a connection between breathing elevated short-term NO$_2$ concentrations, and increased visits to emergency departments and hospital admissions for respiratory issues, especially asthma.

NO$_2$ concentrations in vehicles and near roadways are appreciably higher than those measured at monitors in the current network. In fact, in-vehicle concentrations can be 2-3 times higher than measured at nearby area-wide monitors. Near-roadway (within about 50 meters) concentrations of NO$_2$ have been measured to be approximately 30 to 100% higher than concentrations away from roadways.

Individuals who spend time on or near major roadways can experience short-term NO$_2$ exposures considerably higher than measured by the current network. Approximately 16% of U.S housing units are located within 300 ft of a major highway, railroad, or airport (approximately 48 million people). This population likely includes a higher proportion of non-white and economically-disadvantaged people.

NO$_2$ exposure concentrations near roadways are of particular concern for susceptible individuals, including people with asthma asthmatics, children, and the elderly.

The sum of nitric oxide (NO) and NO$_2$ is commonly called nitrogen oxides or NOx. Other oxides of nitrogen including nitrous acid and nitric acid are part of the nitrogen oxide family. While EPA’s National Ambient Air Quality Standard (NAAQS) covers this entire family, NO$_2$ is the component of greatest interest and the indicator for the larger group of nitrogen oxides.

NOx react with ammonia, moisture, and other compounds to form small particles. These small particles penetrate deeply into sensitive parts of the lungs and can cause or worsen respiratory disease, such as emphysema and bronchitis, and can aggravate existing heart disease, leading to increased hospital admissions and premature death.

Ozone is formed when NOx and volatile organic compounds react in the presence of heat and sunlight. Children, the elderly, people with lung diseases such as asthma, and people who work or exercise outside are at risk for adverse effects from ozone. These include reduction in lung function and increased respiratory symptoms as well as respiratory-related emergency department visits, hospital admissions, and possibly premature deaths.

Emissions that lead to the formation of NO$_2$ generally also lead to the formation of other NOx. Emissions control measures leading to reductions in NO$_2$ can generally be expected to
reduce population exposures to all gaseous NOx. This may have the important co-benefit of reducing the formation of ozone and fine particles both of which pose significant public health threats.