November 11, 2010

REPORT ADDENDUM

Addendum to Groundwater Flow Modeling Conducted for Simulation of Rosemont Copper's Proposed Mine Supply Pumping Sahuarita, Arizona

Prepared for:

ROSEMONT COPPER

Prepared by:
Errol L. Montgomery & Associates, Inc.
Rosemont is pleased to transmit the following document:

- *Addendum to Groundwater Flow Modeling Conducted for Simulation of Rosemont Copper’s Proposed Mine Supply Pumping, Sahuarita, Arizona, E.L. Montgomery and Associates, November 12, 2010*

Rosemont is providing three hardcopies and two disk copies for the Forest and two hardcopies and one disk copy for SWCA of the reports.
ADDENDUM TO GROUNDWATER FLOW MODELING
CONDUCTED FOR SIMULATION OF ROSEMONT COPPER’S
PROPOSED MINE SUPPLY PUMPING
SAHUARITA, ARIZONA

INTRODUCTION

This addendum includes additional explanation and analysis for the groundwater flow model used to simulate impacts of water supply pumping for the Rosemont mine as part of an Environmental Impact Analysis (EIS). The original modeling study is presented in the April 30, 2009 Montgomery & Associates (M&A) report titled: “Groundwater Flow Modeling Conducted for Simulation of Rosemont Copper’s Proposed Mine Supply Pumping, Sahuarita, Arizona.” Analysis presented herein is consistent with agreements made between the U.S. Forest Service, MWH, Rosemont Copper, and Montgomery & Associates, in an August 30, 2010 meeting. The work presented in this addendum does not include any changes to the final model projections presented in the M&A report (2009b). A location map is presented on Figure A-1.

MODELING OBJECTIVE

The modeling objective was to project groundwater level impacts resulting from proposed Rosemont mine-supply pumping using an accepted numerical model for the area. To achieve this objective Montgomery & Associates utilized the latest version of the Arizona Department of Water Resources (ADWR) Tucson Active Management Area (TAMA)
groundwater flow model. The model is calibrated to observed groundwater level conditions in the Tucson basin from 1940 through 1999.

MODEL CALIBRATION AND UPDATES TO THE ADWR TAMA MODEL

The ADWR TAMA model was selected for the EIS analysis due to model’s acceptance by ADWR for use in 100-year groundwater withdrawal applications under Arizona’s Assured Water Supply (AWS) regulatory program. Hydrogeology of the TAMA, including aquifer parameters and hydrogeologic units, has been substantially investigated. These data have been incorporated into the model over the almost 40 years of its development by the U. S. Geological Survey and ADWR. For purposes of this EIS investigation the aquifer parameters simulated in the ADWR TAMA model are considered calibrated. Only in the area of the Rosemont wellfield, where new hydraulic testing results and lithologic data were available from wells RC-2 and E-1, are model hydraulic parameters revised to be consistent with testing results and model layers revised to match observed lithology, as described in the M&A modeling report (2009b). Updating the TAMA model with new localized hydraulic data is appropriate and consistent with regulatory protocol when using the model for Arizona AWS submittals.

As described in the April 27, 2009 Montgomery & Associates (M&A, 2009a) technical memorandum submitted to ADWR entitled “Second Update to ADWR Model in Sahuarita/Green Valley Area”, the TAMA ADWR model was updated to correct inaccurate representations of past pumping and recharge stresses in the Rosemont study area. Recharge from the Santa Cruz River was updated from 1940 through 2007, and recharge from artificial sources (treated effluent, Central Arizona Project (CAP), mine seepage, and agricultural) was updated from 2000 through 2007. These changes improved the match of the simulated to observed groundwater levels, as shown on Figures 4 through 11 of the 2009 technical memorandum to ADWR. Future allocated pumping and artificial recharge were
also updated. In order to show better resolution of pumping response, the model grid was refined in the vicinity of the Rosemont wellfield.

Observed 2005 January/February groundwater levels and contours, contours of simulated groundwater levels for the final Rosemont model and initial ADWR TAMA model, and residuals of observed minus simulated groundwater levels for the two simulations, are shown on Figure A-2, for wells in the vicinity of the Rosemont wellfield. Data for early 2005 is the most recently available comprehensive groundwater data from ADWR. With the exception of measurements at two wells located more than 4 miles south-southwest from the Rosemont wellfield, the simulated 2005 groundwater levels for the Rosemont model are a better match than the initial ADWR TAMA model. However, it is important to note that due to the use of annual stress periods in the model, simulated groundwater levels are representative of annual averages and do not represent the substantial seasonal variations in groundwater levels which occur in response to summer agricultural pumping. Available ADWR data for observed groundwater levels in January/February 2005 occur during the non-pumping winter season. For this reason, the model calibration presented in the M&A report (2009b) relied on matching the simulated average annual trends to observed historical groundwater level trends rather than matching individual observed groundwater levels. This is appropriate as most of the available observed data are from the winter non-pumping season, which are higher than annual average simulated levels.

SECTION OF PROJECTED GROUNDWATER LEVELS IN ROSEMONT WELLFIELD

Figure A-3 shows a northwest-southeast section through the western and eastern Rosemont properties and depicts projected groundwater levels due to Rosemont pumping at end of 2021 and 2031, respectively. The trace line of the section is shown on Figure A-1. Projected groundwater levels shown on Figure A-3 are for: (1) end of 2021 for simulations with and without Rosemont pumping, corresponding to groundwater level surfaces presented
on Figures 27 and 28 of the M&A report (2009b); and (2) end of 2031 for simulations with and without Rosemont pumping, corresponding to groundwater level surfaces presented on Figures 29 and 30 of the M&A report (2009b).

INFLUENCE OF SOUTHERN CONSTANT HEAD MODEL BOUNDARY

The constant head model boundary specified approximately 14.5 miles south from the Rosemont wellfield does not artificially reduce projected drawdown from Rosemont pumping. **Figure A-4** shows the 0.1 foot projected drawdown contour at end of 2031 for the Rosemont model pumping simulation. The 0.1 foot drawdown contour is approximately 7 miles north of the southern constant head boundary, indicating that drawdown did not extend to the boundary and induce artificial groundwater inflow to the model from the southern constant head boundary.

HYDROLOGIC CHARACTERISTICS OF THE SANTA CRUZ FAULT

The regional Santa Cruz fault is not considered to be a hydraulic barrier or conduit, which would uniquely affect drawdown response from Rosemont pumping. The faulting is believed to have occurred during the Tertiary age of the Tinaja beds deposition, which predates the Quaternary age deposition of the Fort Lowell Formation. In the area north of the proposed Rosemont wellfield, Anderson (1987) indicates vertical displacement along the fault resulted in a thicker deposition of the upper Tinaja beds on the east side of the fault relative to the west side of the fault (shown on Figure 6 of the M&A 2009b report). The Santa Cruz fault characteristics, including hydraulic conductivity data for the aquifer on both sides of the fault, have been incorporated into the TAMA model by U.S. Geological Survey and ADWR.
SENSITIVITY OF MODEL PROJECTIONS TO CHANGES IN AQUIFER PROPERTIES

As described in the M&A report (2009b), hydraulic conductivity of model layer 2, elevation of the top of layer 2, and transmissivity of model layer 3, are increased from what is specified in the ADWR TAMA model in the area of wells RC-2 and E-1. The modifications were made to be consistent with hydrologic data obtained from wells RC-2 and E-1. Differences between simulated and observed 2005 January/February groundwater levels are slightly larger with these aquifer parameter modifications, compared to leaving the parameters unchanged from original values specified in the ADWR TAMA model. Observed 2005 January/February groundwater levels and contours, contours of simulated groundwater levels for the final Rosemont model and the same final model using ADWR TAMA model layer 2 and three aquifer properties in the wellfield area, and residuals of observed minus simulated groundwater levels for the two simulations are shown on Figure A-5.

It should be noted that the slightly larger differences between simulated average annual groundwater levels from the model and observed non-pumping winter levels is within the range of seasonal variability of observed groundwater levels; as much a 100 feet at well E-1. Given the seasonal variability, it should generally not be concluded that the match is made worse using the updated hydraulic parameters, only that it is different. For these reasons, as we stated previously, comparison of the simulated and observed groundwater level trends is more appropriate for evaluating the model calibration.

A sensitivity simulation was run to determine variation in projected drawdown from Rosemont pumping due to the above-described aquifer property modifications in the vicinity of the Rosemont wellfield. The final Rosemont model simulation was run from steady-state conditions through 2031 using the ADWR TAMA model aquifer parameters and layer thicknesses. A comparison of the projected drawdown from this sensitivity simulation and the final Rosemont model projection is shown on Figure A-6. Projected drawdown at the western Rosemont property at end of 2031 is 110 feet and projected drawdown at the eastern Rosemont
property at end of 2031 is 177 feet. Other than the area in the immediate vicinity of the eastern property and southeast from the eastern property, the projected drawdown is very similar to the final Rosemont model results.

The increased drawdown for ADWR TAMA model parameters is consistent with hydrologic principals; the lower permeability specified in the TAMA model results in larger projected drawdown. However, the changes to these aquifer parameters in the final Rosemont model is appropriate based on data obtained from wells RC-2 and E-1. Layer 2 simulated hydraulic conductivity at the eastern property (well RC-2) was increased more than twofold and transmissivity in layer 3 at the same location was quadrupled (described in the M&A 2009b report). Hydraulic conductivity changes at the western property (well E-1) were relatively small and similar to surrounding values. Changes at the eastern property made the transmissivity consistent with adjacent values to the east and south. Projected drawdown at the eastern property simulated with modified aquifer parameters from actual testing is more defensible compared to that projected using the TAMA model aquifer parameters.

POTENTIAL IMPACTS FROM COMMUNITY WATER CAP RECHARGE

A potential CAP recharge project sited by Community Water Company (CWC) approximately 3 miles south-southwest from the proposed Rosemont wellfield (Figure A-1), is projected to cause groundwater level rise at the wellfield. Evaluation of recharge feasibility and projection of groundwater level rise from recharge for the CWC project is documented in the 2010 Montgomery & Associates Technical Memorandum: “Modeling Results for Proposed Community Water Company of Green Valley Recharge.” The CWC investigation used the Rosemont model, including simulation of Rosemont water supply pumping, to simulate CAP water recharge at a rate of 7,000 acre-feet per year (AF/yr) for the period 2012 to 2031. The reported projected maximum groundwater level rise due solely to the proposed CWC recharge is approximately 37 feet at the western Rosemont wellfield property and
approximately 13 feet at the eastern Rosemont wellfield property (Montgomery & Associates, 2010). Projected maximum groundwater level drawdown at end of 2031 due solely to Rosemont water supply pumping would be reduced based on the CWC reported groundwater level rise projections.

POTENTIAL IMPACTS FROM SIERRITA MINE SULFATE MITIGATION PUMPING

When implemented, the planned Sierrita Mine Sulfate Mitigation pumping, located approximately 5.5 miles southwest from the proposed Rosemont wellfield and extending south approximately 5 additional miles (Figure A-1), is expected to cause groundwater level drawdown in the surrounding area. Evaluation of the mitigation pumping and projection of future groundwater levels during pumping is documented in the January 29, 2010 Hydro Geo Chem, Inc., and Clear Creek Associates, P.L.C. report: “Final Wellfield Conceptual Design Mitigation Order on Consent Docket No. P-50-06.” Pumping for the planned mitigation is estimated to commence in 2012 and ramp up to an average rate of approximately 22,250 to 23,900 AF/yr (depending on which scenario is implemented) during the period 2014 through 2030. The increased pumping is offset by equal decreases in Sierrita pumping elsewhere in the TAMA. The mitigation pumping is planned to occur through 2060. The mitigation pumping includes existing wells at the front of the Sierrita tailing impoundment which are currently simulated at approximately 8,100 AF/yr in the Rosemont model, which will be reduced to approximately 6,250 AF/yr starting in 2014 under the mitigation plan. Projected drawdown resulting solely from the mitigation pumping is not provided in any reports and cannot be determined from reported future groundwater levels. This makes it impossible to determine the effect Sierrita mitigation pumping may have on the Rosemont operating wells.
EIS OBJECTIVES AND UNCERTAINTY IN MODEL PROJECTIONS

Modeling work for this EIS analysis focused on projecting drawdown in the area of the Rosemont wellfield. To accomplish this objective the ADWR TAMA model was updated to improve the match of historical simulated and observed groundwater level trends in the vicinity of the Rosemont wellfield. These trends show response to historical groundwater stresses in the area. The updated model matches well to observed historical trends which forms the basis for using the model to project future groundwater level drawdown in response to Rosemont pumping (M&A 2009b).

The projected drawdown is primarily dependent on the aquifer parameters specified in the model; other groundwater stresses in the area such as pumping have only small influence on projected drawdown from Rosemont pumping. Uncertainty in aquifer parameters is inherent in any groundwater flow model and local variability in aquifer parameters is typically difficult to quantify. In a regional flow system, such as the one the Rosemont wellfield will pump from, the average conditions of the surrounding flow system will control the long-term drawdown response. The ADWR TAMA model was selected because it has been developed to represent the average aquifer properties of the flow system in the Rosemont wellfield area. Extensive investigation of the aquifer properties of the Tucson basin in the Sahuarita area and beyond, which have been incorporated into the model by USGS and ADWR, reduce the uncertainty in long-term drawdown projections from the Rosemont model. Local hydrogeologic variability at the wellfield site was investigated with testing at wells E-1 and RC-2, in order to improve the certainty of drawdown projections in the immediate vicinity of the Rosemont wellfield. The methodology followed in this modeling update and analysis was consistent with accepted protocol by ADWR for Assured Water Supply analyses in the TAMA.

In conjunction with this modeling analysis, Rosemont Copper proceeded with an initiative to address potential impacts to local well owners in the Sahuarita Heights area, the
only existing groundwater users within the area of substantial projected groundwater drawdown from Rosemont pumping. Groundwater level declines in the Sahuarita Heights area may occur due to: (1) Rosemont pumping; (2) other future new pumping in the area; or (3) continued current pumping. The Rosemont model was designed to simulate conservatively higher increases in future non-Rosemont pumping which, when combined with Rosemont pumping, could potentially impact the local Sahuarita Heights well owners. The Rosemont model accomplishes this objective.

Given the downturn in economic conditions, there is little certainty that a majority of the future simulated pumping increases for Arizona State Land Department (ASLD) (approximately 14,200 AF/yr; build out from 2012 through 2031) and Sahuarita Water Company (SWC) (approximately 8,600 AF/yr; build out from 2010 through 2037) developments will occur. Sierrita mitigation pumping, not simulated in the model, may cause drawdown at the Rosemont wellfield which would be offset by the unrealized ASLD- and SWC-attributed projected drawdown. Rise from the CWC recharge project will offset drawdown at the Rosemont wellfield.
REFERENCES

LIST OF FIGURES

A-1 LOCATION MAP AND EXTENT OF ROSEMONT STUDY AREA

A-2 COMPARISON OF OBSERVED AND SIMULATED WATER LEVELS
 FOR ROSEMONT MODEL WITH AND WITHOUT ADWR TAMA
 MODEL AQUIFER PROPERTIES IN ROSEMONT WELLFIELD
 AREA, FOR JANUARY/FEBRUARY 2005

A-3 SECTION OF PROJECTED GROUNDWATER LEVELS

A-4 CONTOURS OF PROJECTED GROUNDWATER LEVEL
 DRAWDOWN AT END OF 2031 DUE TO ROSEMONT PUMPING

A-5 COMPARISON OF OBSERVED AND SIMULATED WATER LEVELS
 FOR ROSEMONT MODEL AND ORIGINAL ADWR TAMA MODEL,
 FOR JANUARY/FEBRUARY 2005

A-6 PROJECTED GROUNDWATER LEVEL DRAWDOWNS DUE TO
 ROSEMONT PUMPING AT END OF 2031 (SP92), FOR ROSEMONT
 MODEL AND ADWR TAMA MODEL AQUIFER PROPERTIES IN
 WELLFIELD AREA
FIGURE A-2. COMPARISON OF OBSERVED AND SIMULATED WATER LEVELS FOR ROSEMONT MODEL WITH AND WITHOUT ADWR TAMA MODEL AQUIFER PROPERTIES IN ROSEMONT WELLFIELD AREA, FOR JANUARY / FEBRUARY 2005
EXPLANATION

- Fort Lowell Formation (Model Layer 1)
- Upper Tinaja Beds (Model Layer 2)
- Middle and Lower Tinaja Beds (Model Layer 3)

Projected Groundwater Level Elevation at the end of 2021 (SP'21) without Rosemont Pumping
- Projected Groundwater Level Elevation at the end of 2021 (SP'21) with Rosemont Pumping
- Projected Groundwater Level Elevation at the end of 2031 (SP'31) without Rosemont Pumping
- Projected Groundwater Level Elevation at the end of 2031 (SP'31) with Rosemont Pumping

Ultimate Model Depth is Below 0 MSL Elevation
FIGURE A-4. CONTOURS OF PROJECTED GROUNDWATER LEVEL DRAWDOWN AT END OF 2031 DUE TO ROSEMONT PUMPING

EXPLANATION

Contour of Projected Groundwater Level Drawdown at End of 2031 due to Rosemont pumping, in feet

Layer 3 Model Boundary
FIGURE A-5. COMPARISON OF OBSERVED AND SIMULATED WATER LEVELS FOR ROSEMONT MODEL AND ORIGINAL ADWR TAMA MODEL, FOR JANUARY / FEBRUARY 2005

EXPLANATION

- Observed Groundwater Level, January / February 2005
- Residual Error for Rosemont Model
- Residual Error for ADWR TAMA Model

2,575 • 9.6 • 19.3

Observed Groundwater Level Contour from January / February 2005

2,600

2005 Simulated Groundwater Level Contour from Rosemont Model

2,600

2005 Simulated Groundwater Level Contour from ADWR TAMA Model

Layer 3 No-Flow Boundary
PROJECTED GROUNDWATER LEVEL DRAWDOWNS DUE TO ROSEMONT PUMPING AT END OF 2031 (SP92), FOR ROSEMONT MODEL AND ADWR TAMA MODEL AQUIFER PROPERTIES IN WELLFIELD AREA

ROSEMONT COPPER
A Bridge to a Sustainable Future.

Montgomery & Associates
Water Resource Consultants

FIGURE A-6

EXPLANATION
- Simulated Location for Rosemont Supply Well
- Model Simulated Twin Buttes Tailing Seepage Cells
- Model Simulated Sierrita Tailing Seepage Cells
- Model Simulated Esperanza Tailing Seepage Cells
- Rosemont Property
- No-Flow Boundary
- Contour of Projected Groundwater Level Drawdown, in feet, due to Rosemont pumping, for Rosemont model
- Contour of Projected Groundwater Level Drawdown, in feet, due to Rosemont pumping, for Rosemont model with ADWR TAMA model aquifer properties

PROJECTED GROUNDWATER LEVEL DRAWDOWNS DUE TO ROSEMONT PUMPING AT END OF 2031 (SP92), FOR ROSEMONT MODEL AND ADWR TAMA MODEL AQUIFER PROPERTIES IN WELLFIELD AREA

ROSEMONT COPPER
A Bridge to a Sustainable Future.

Montgomery & Associates
Water Resource Consultants

FIGURE A-6

EXPLANATION
- Simulated Location for Rosemont Supply Well
- Model Simulated Twin Buttes Tailing Seepage Cells
- Model Simulated Sierrita Tailing Seepage Cells
- Model Simulated Esperanza Tailing Seepage Cells
- Rosemont Property
- No-Flow Boundary
- Contour of Projected Groundwater Level Drawdown, in feet, due to Rosemont pumping, for Rosemont model
- Contour of Projected Groundwater Level Drawdown, in feet, due to Rosemont pumping, for Rosemont model with ADWR TAMA model aquifer properties

PROJECTED GROUNDWATER LEVEL DRAWDOWNS DUE TO ROSEMONT PUMPING AT END OF 2031 (SP92), FOR ROSEMONT MODEL AND ADWR TAMA MODEL AQUIFER PROPERTIES IN WELLFIELD AREA

ROSEMONT COPPER
A Bridge to a Sustainable Future.

Montgomery & Associates
Water Resource Consultants

FIGURE A-6

EXPLANATION
- Simulated Location for Rosemont Supply Well
- Model Simulated Twin Buttes Tailing Seepage Cells
- Model Simulated Sierrita Tailing Seepage Cells
- Model Simulated Esperanza Tailing Seepage Cells
- Rosemont Property
- No-Flow Boundary
- Contour of Projected Groundwater Level Drawdown, in feet, due to Rosemont pumping, for Rosemont model
- Contour of Projected Groundwater Level Drawdown, in feet, due to Rosemont pumping, for Rosemont model with ADWR TAMA model aquifer properties

PROJECTED GROUNDWATER LEVEL DRAWDOWNS DUE TO ROSEMONT PUMPING AT END OF 2031 (SP92), FOR ROSEMONT MODEL AND ADWR TAMA MODEL AQUIFER PROPERTIES IN WELLFIELD AREA

ROSEMONT COPPER
A Bridge to a Sustainable Future.

Montgomery & Associates
Water Resource Consultants

FIGURE A-6

EXPLANATION
- Simulated Location for Rosemont Supply Well
- Model Simulated Twin Buttes Tailing Seepage Cells
- Model Simulated Sierrita Tailing Seepage Cells
- Model Simulated Esperanza Tailing Seepage Cells
- Rosemont Property
- No-Flow Boundary
- Contour of Projected Groundwater Level Drawdown, in feet, due to Rosemont pumping, for Rosemont model
- Contour of Projected Groundwater Level Drawdown, in feet, due to Rosemont pumping, for Rosemont model with ADWR TAMA model aquifer properties

PROJECTED GROUNDWATER LEVEL DRAWDOWNS DUE TO ROSEMONT PUMPING AT END OF 2031 (SP92), FOR ROSEMONT MODEL AND ADWR TAMA MODEL AQUIFER PROPERTIES IN WELLFIELD AREA

ROSEMONT COPPER
A Bridge to a Sustainable Future.

Montgomery & Associates
Water Resource Consultants

FIGURE A-6

EXPLANATION
- Simulated Location for Rosemont Supply Well
- Model Simulated Twin Buttes Tailing Seepage Cells
- Model Simulated Sierrita Tailing Seepage Cells
- Model Simulated Esperanza Tailing Seepage Cells
- Rosemont Property
- No-Flow Boundary
- Contour of Projected Groundwater Level Drawdown, in feet, due to Rosemont pumping, for Rosemont model
- Contour of Projected Groundwater Level Drawdown, in feet, due to Rosemont pumping, for Rosemont model with ADWR TAMA model aquifer properties

PROJECTED GROUNDWATER LEVEL DRAWDOWNS DUE TO ROSEMONT PUMPING AT END OF 2031 (SP92), FOR ROSEMONT MODEL AND ADWR TAMA MODEL AQUIFER PROPERTIES IN WELLFIELD AREA

ROSEMONT COPPER
A Bridge to a Sustainable Future.

Montgomery & Associates
Water Resource Consultants

FIGURE A-6

EXPLANATION
- Simulated Location for Rosemont Supply Well
- Model Simulated Twin Buttes Tailing Seepage Cells
- Model Simulated Sierrita Tailing Seepage Cells
- Model Simulated Esperanza Tailing Seepage Cells
- Rosemont Property
- No-Flow Boundary
- Contour of Projected Groundwater Level Drawdown, in feet, due to Rosemont pumping, for Rosemont model
- Contour of Projected Groundwater Level Drawdown, in feet, due to Rosemont pumping, for Rosemont model with ADWR TAMA model aquifer properties

PROJECTED GROUNDWATER LEVEL DRAWDOWNS DUE TO ROSEMONT PUMPING AT END OF 2031 (SP92), FOR ROSEMONT MODEL AND ADWR TAMA MODEL AQUIFER PROPERTIES IN WELLFIELD AREA

ROSEMONT COPPER
A Bridge to a Sustainable Future.

Montgomery & Associates
Water Resource Consultants

FIGURE A-6

EXPLANATION
- Simulated Location for Rosemont Supply Well
- Model Simulated Twin Buttes Tailing Seepage Cells
- Model Simulated Sierrita Tailing Seepage Cells
- Model Simulated Esperanza Tailing Seepage Cells
- Rosemont Property
- No-Flow Boundary
- Contour of Projected Groundwater Level Drawdown, in feet, due to Rosemont pumping, for Rosemont model
- Contour of Projected Groundwater Level Drawdown, in feet, due to Rosemont pumping, for Rosemont model with ADWR TAMA model aquifer properties

PROJECTED GROUNDWATER LEVEL DRAWDOWNS DUE TO ROSEMONT PUMPING AT END OF 2031 (SP92), FOR ROSEMONT MODEL AND ADWR TAMA MODEL AQUIFER PROPERTIES IN WELLFIELD AREA

ROSEMONT COPPER
A Bridge to a Sustainable Future.

Montgomery & Associates
Water Resource Consultants

FIGURE A-6

EXPLANATION
- Simulated Location for Rosemont Supply Well
- Model Simulated Twin Buttes Tailing Seepage Cells
- Model Simulated Sierrita Tailing Seepage Cells
- Model Simulated Esperanza Tailing Seepage Cells
- Rosemont Property
- No-Flow Boundary
- Contour of Projected Groundwater Level Drawdown, in feet, due to Rosemont pumping, for Rosemont model
- Contour of Projected Groundwater Level Drawdown, in feet, due to Rosemont pumping, for Rosemont model with ADWR TAMA model aquifer properties