

1.0 INTRODUCTION

At the request of SWCA Environmental Consultants (SWCA), Golder Associates Inc. (Golder) conducted on August 5, 2010, a review of the TetraTech design document Site Water Management Update for the Rosemont Copper Project (Site Water Management Update) and submitted comments to SWCA on a document titled Rosemont Copper Project, Technical Review of Site Water Management (Golder 2010a). That memorandum is provided herein as Attachment 1. The review consisted of reading the pertinent sections of the report and supporting documents and rendering a professional opinion regarding whether the data, assumptions, and methods used in the report conform to currently accepted industry practice in the disciplines of hydrology and sediment transport only. In addition, Golder was requested to render a professional opinion whether the conclusions reached in the report appear reasonable.

TetraTech provided responses to Golder’s review on November 30, 2010 (TetraTech 2010a). The TetraTech document is provided herein as Attachment 2.

This memorandum provides additional comments to TetraTech’s responses. For consistency, this technical memorandum provides direct response to TetraTech’s comments and is organized following TetraTech’s response section headings and numbers. Table 1 provides a summary of Golder’s original concerns after the initial review of the Site Water Management Update as well as columns stating whether TetraTech has, in Golder’s opinion, sufficiently addressed or partially addressed the concern, or if the concern still remains outstanding. Justification for the current status of each concern is given in the following sections.
Table 1 Red Flags and Potential Fatal Flaws

<table>
<thead>
<tr>
<th>Concern</th>
<th>Section</th>
<th>Addressed</th>
<th>Partially Addressed</th>
<th>Outstanding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using smaller precipitation depth (18in) to calculate average annual runoff instead of NRCS recommended depth (24in)</td>
<td>1</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No volume check calculations using maximum saturation event conditions</td>
<td>2</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>No calculations presented for pit diversion channel and pit stormwater pond</td>
<td>3</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methodology used for sediment yield calculations should be reviewed as it is considered to be inappropriate</td>
<td>4</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lack of drainage from perimeter containment areas</td>
<td>5</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demonstrate adherence to geometric recommendations on landform element suggestions previously proposed by Golder</td>
<td>6</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lack of detail for sediment control designs during operations</td>
<td>7</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific sediment yield is the same for pre- and post-mining conditions, which appears to be incorrect</td>
<td>8</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storage on top of benches is unusual for long-term closure and could lead to massive failure</td>
<td>9</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Down chutes on both tailings facility and waste rock can lead to failure as riprap lining may be inappropriate protection type</td>
<td>10</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow-through drains: Potential long-term difficulties with maintenance and retaining discharge capacity</td>
<td>11</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water storage on top of tailings facility and waste rock dump is unusual for long-term closure and could lead to massive failure</td>
<td>12</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No allowance has been made for anticipated erosion from landforms into storage locations on benches and perimeter containment areas; 14 to 15 inches of erosion is anticipated from the landform areas</td>
<td>13</td>
<td>x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.0 RUNOFF CALCULATIONS

TetraTech's response to Golder's comment was that there is no corroborative data supporting 24-inch average annual rainfall and that using 24 inches gives unacceptably high results when compared to measured data from nearby watercourses. Golder's interpretation of this comment is that the higher average annual rainfall reported by NRCS of 24 inches was not used because TetraTech believes it leads to unrealistic results. Therefore, TetraTech chose the lower average annual rainfall amount of 18 inches as reported by the Arizona Department of Water Resources Water Atlas. This appears to be qualitative and Golder is uncertain how to assess the selection. The question that comes to mind is: How is it determined what is realistic or unrealistic?

Golder's principal concern relates not to peak discharge but to water volume. The maximum saturation event is focused on volume rather than peak discharge and usually occurs over several consecutive days of precipitation. TetraTech does not provide a quantitative response to the issue as to whether the maximum storage requirements were adequately determined; particularly as it affects the storage in various facilities including the storage on the waste dump benches (see section 9.0 for specific concerns on bench storage). Golder was unable to locate and verify the calculations determining the size of the storage on the waste dump benches in the documentation provided. The only calculations for the benches that were identified were discharge calculations to size conveyance channels.

Golder recommends verification of the selected storm event and quantitative assessment of maximum storage requirements.

3.0 PIT DIVERSION AND PIT STORMWATER POND CALCULATIONS

TetraTech indicates that they used the 100-year/24-hour storm to size the pond and South 2 Drain. The design criteria established in the Site Water Management Update require that the Pit Stormwater Pond and the Crusher Stormwater Pond have the capacity to contain the PMP volume of rainfall. Using the 100-year event does not satisfy that design criterion.

Golder recommends that TetraTech evaluate the potential effect of the maximum saturation event.

4.0 SEDIMENT YIELD CALCULATIONS

TetraTech's response is acceptable.

5.0 DRAINAGE FROM PERIMETER CONTAINMENT AREAS

TetraTech does not address the question as to why only one of the PCAs has an outlet to a natural stream. Golder's interpretation is that some of the PCAs will discharge water into the flow-through drains, but that the water collected in others will be lost to the natural system. Please indicate whether that is the intent and whether it is acceptable from an environmental point of view.
As far as sediment management is concerned, Golder is uncertain whether the closure plan is intended to include maintenance. Is the intent to maintain the PCAs through removing sediment from time to time after closure? The estimated specific natural sediment yield of 1.15 acre-ft/year may deposit within the PCA and may require maintenance from time to time to retain the volumes of PCAs.

Golder recommends clarification of post-closure maintenance and likely reduction of water flow to the surrounding environment.

6.0 DEMONSTRATE ADHERENCE TO GEOMETRIC LANDFORM DESIGN BY GOLDER

Golder’s understanding is that TetraTech proposes to use the maximum vertical lift of 100 feet as specified in the landform technical memorandum (Golder 2010b). However, Golder is concerned with the slope angle as well as the cover particle size gradations. Slope angle should follow those recommended in the 2010 technical memorandum and verified based on geotechnical stability. The cover material type cannot be adequately reviewed, because the statement, “A mixed material with coarse fragments...” (Attachment 2) does not provide enough data for review. Golder’s experience has been that the gradation and size of the material placed on the surface of reclaimed slopes is of critical importance to prevent erosion.

It is recommended that TetraTech address the issues of slope and preferred particle size distributions of cover material.

7.0 DETAILED SEDIMENT CONTROL DESIGN DURING OPERATIONS

TetraTech satisfactorily addressed this comment by Golder.

8.0 PRE- AND POST-MINING SEDIMENT YIELD CALCULATIONS

TetraTech indicates that the post-mining sediment yield would be 89% of the pre-mining sediment yield. The main reason this is reduced during post-mining conditions is reduction in the catchment size. However, Golder understands that part of the reduced sediment yield assumed by TetraTech is due to the planned revegetation of the steep slopes. In order to confirm this assumption, it is necessary to either conduct full-scale experimental erosion tests on vegetated slopes with similar steepness, or to use a theoretical method such as the Erodibility Index Method (Annandale, 2006) to provide an indication of the enhanced erosion resistance. For the latter, it is necessary to obtain information on the root architecture of the plants intended for revegetation.

Golder recommends that TetraTech review the revised sediment yield estimates and provide either theoretical or field testing results to illustrate the effectiveness of vegetation on the steep slopes (within or in similar project environment) to reduce erosion.
9.0 WATER STORAGE ON BENCHES

It is Golder's opinion that placing unlined ponds on granular material benches without drainage provision is not good or standard practice. Water storage on benches may lead to either or both seepage on the waste rock dump slopes and concentrated flow on the slope face, which could result in slope instability and undue erosion. Additionally, Golder is concerned about the cover materials for the dry stack and waste rock. The dry stack is likely to be compacted very fine materials with low permeability; the waste rock is likely to be Run of Mine, large to medium rock with high permeability. This difference may exacerbate the concerns listed above.

Volume calculations for the storage ponds on the benches were not included in the materials provided to Golder and, therefore, could not be reviewed. Therefore, we cannot comment on the appropriateness of the size of these ponds.

Golder has not implemented a design where ponded water is stored on waste rock dumps. Therefore, it is requested that TetraTech provide case studies and/or regulatory acceptance of this approach. Additionally, it is recommended that TetraTech provide more detail as it relates to pond design (volume and lining details) and to present stability and seepage analyses indicating that the behavior of unlined ponds without drainage provision will not result in undue slope failure and will not result in erosion initiated by seepage on the waste dump slope surfaces.

10.0 RIPRAP DOWNCHUTES

Golder remains concerned about the fact that TetraTech uses the empirical equations for sizing the riprap outside of their intended ranges, both as far as slope ranges and particle sizes are concerned. The USGS and FHWA methods are not intended for steep slope design. The USACE method can be used to a maximum slope of 20%, while the use of the Robinson method is limited to a maximum rock size of 11 inches, as confirmed by TetraTech in their response.

The slope angles requiring protection is on the order of 33%, which is larger than those assumed by the USGS, FHWA, and the USACE. Therefore, those methods cannot justifiably be used to size riprap for the steep slopes at Rosemont Mine. TetraTech's specification of riprap sizes on the order of 2 to 2.5 times the maximum tested sizes is a large extrapolation. Placing such large rock sizes on steep channels subjects the rock to forces that are different to those tested. As indicated before, it is Golder's experience that riprap channels with such large rock elements often fail at much lower discharges than assumed.

As a frame of reference, one can relate the calculated flow depth to the thickness of the proposed riprap. The calculated flow depth is just below 1 foot, while the thickness of the proposed riprap protection is up to 48 inches thick (two times the median particle size of 24 inches). The design is proportionally not defensible.
TetraTech justifies the use of the geo-fabric by referring to the USACE. As previously noted, the USACE maximum channel slope is 20%, which is considerably smaller than the 33% at Rosemont mine. Golder remains concerned about the use of geotextile under riprap on steep slopes.

Golder recommends that TetraTech consider using other means of protecting the steep channels against erosion.

11.0 FLOW-THROUGH DRAINS
TetraTech refers to an extensive flow-through drain sedimentation analysis that was performed. Golder found the TetraTech referenced hydraulic analysis documentation (Campbell 1989) but could not find any detailed analysis related to sedimentation of the drains or inlets to the drains. Golder’s sedimentation concerns relate principally to the inflow conditions at the rock berm. The only analysis that we are aware of is that which is attached to TetraTech’s response, referred to as the “LEPS CALCULATION WORKSHEET.” This calculation is a simple comparison between flow velocity and settling velocity, which can hardly be viewed as a detailed sedimentation analysis. Sedimentation against and in front of the rock berm inlet has not been quantitatively considered. The reference to Campbell (1989) relates to qualitative assessments of conditions. Quantification of these issues is in order, due to the fact that it is now possible to do so with present technology.

TetraTech is requested to provide quantitative sedimentation calculations.

12.0 WATER ON TOP OF TAILINGS FACILITY AND WASTE ROCK STORAGE AREA
TetraTech indicates that it relies on the AMEC (2009) report entitled “Rosemont Copper Company Dry Stack Tailings Storage Facility Final Design Report” and on the TetraTech (2010b) report entitled “Infiltration, Seepage and Fate and Transport Modeling Report” as proof that the dry stack facility will be stable and that infiltration will not be a problem. Golder was unable to locate these reports and cannot comment on this reliance by TetraTech. Golder could not locate any calculations addressing the issue of internal erosion.

The concerns relating to storage on the benches of the waste rock dump have been expounded upon in section 9.0 of this memorandum.

TetraTech is requested to address these concerns, particularly the issues related to potential internal erosion.

13.0 ALLOWANCE FOR EROSION IN CONTAINMENT AREAS
TetraTech indicates that there is excess capacity: If the facility is evaluated as a whole and if sedimentation reduces upstream capacity, then it can be captured in downstream facilities. Golder could
not locate volume calculations for determining the size of the bench storage facilities. The 500-year/24-hour calculations relate to discharge and not volume assessment.

It is recommended that TetraTech determine whether the 30% arbitrary allowance for sedimentation in the bench channels is comparable to the amount of anticipated erosion from the slopes. Golder estimated erosion of 14.4 inches on average over all the slopes.

Golder is also uncertain whether the closure plan includes long-term maintenance, which may be required to keep the bench storage facilities operational. TetraTech is requested to address the long-term maintenance of these structures.

14.0 CONCLUSION
Golder summarized the potential Red Flags and Fatal Flaws found after the initial review of the Site Water Management Update on August 5, 2010, and has provided a summary of the extent to which TetraTech responded to these issues in Table 1. Golder has provided explanations for the current status of each concern and TetraTech is requested to respond to these unresolved concerns.

15.0 REFERENCES
ATTACHMENT 1
1.0 INTRODUCTION

Golder Associates (Golder) conducted a review of the Site Water Management Update for the Rosemont Copper Project (April 2010, Tetra Tech). The Site Water Management Update is presented in five volumes. The review consisted of reading the pertinent sections of the report and supporting documents and rendering a professional opinion regarding whether or not the data, assumptions, and methods used in the report conform to currently accepted industry practice. Review was limited to the goals specified by SWCA as listed in each section below as they relate only to water and erosion management. No review of geotechnical stability or other disciplines were addressed.

This memorandum summarizes the findings Golder’s review of the Site Water Management Update. The goal of the review is to identify any red flags and potential fatal flaws associated with the concepts used or the design of site stormwater management structures.

2.0 RUNOFF CALCULATIONS

Goal: Compare Tetra Tech’s selected method(s) of runoff calculation and the method(s) proposed by Pima County; comment on the applicability of all methods to the Rosemont Project.

Tetra Tech analyzed both the NRCS method and the Pima County method (PC-HYDRO) to determine the most suitable storm criteria for the Rosemont site. Table 1 ranks the design storms obtained by applying these methods in terms of severity.

TetraTech selected the NRCS method to determine peak flows and runoff volumes for the design of structures at the Rosemont site. Golder agrees this method is more appropriate because the Pima County method is more suitable for small urban watersheds and is not as conservative as the selected method.
TABLE 1
SUMMARY OF DESIGN STORM COMPARISON BY TETRATECH

<table>
<thead>
<tr>
<th>NRCS Method</th>
<th>Peak Flow Rate Ranking</th>
<th>Runoff Volume Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000-yr, 24-hr NRCS Type II Dist.</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>500-yr, 24-hr NRCS Type II Dist.</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>100-yr, 24-hr NRCS Type II Dist.</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>100-yr, 1-hr thunderstorm</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>100-yr, 1-hr compressed 6-hr event</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>100-yr, 1-hr NRCS Type II Dist.</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>6-hr Local PMP</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>72-hr General PMP</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Pima County Method</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pima County Method (PC-HYDRO) 100-yr, 6-hr</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

Published reports give the average-annual precipitation as ±24 inches; however, Tetra Tech concludes that the average-annual precipitation is 18 inches. This was obtained by using both site-measured precipitation as well as back-calculating precipitation depth using average-annual runoff from the Arizona Water Atlas (106.7 ac-ft/sq-mi). This raises a few questions:

- How was the selected average rainfall of 18 inches used, and what was the sensitivity of that application compared to using the 24 inches average rainfall?
- Is the use of the Arizona Water Atlas appropriate? Golder understands that the water atlas back calculation was likely only used as a check of the site-calculated average rainfall. However, if one knows what the answer to a problem is, it is easy to select parameters for the back calculation to get to that answer. The question is whether those selected parameters are reasonable.
- How many years of site collected data were used to determine that the average-annual precipitation of 18 inches? Was the record long enough to justify not using the 24 inches average rainfall?

Also lacking in the runoff analyses is an assessment of the effects of the maximum saturation event. Arizona's worst-case runoff volume conditions typically occur during consecutive precipitation days, as for example illustrated in Figure 1.

Experience in Arizona is that long duration, relatively low intensity rains often results in larger flow volumes than the 24-hr or shorter duration design storms. It is recommended that the maximum saturation event runoff be identified for the site and used to evaluate the capacity of the structures impounding water.
3.0 DESIGN CRITERIA FOR WATER CONTROL STRUCTURES

Goal: Concisely tabulate the design criteria selected by Tetra Tech for each water control structure and determine if the design calculations used the selected design criteria values. This information is summarized in Table 2.

As shown in Table 2, it is unknown if the Pit Stormwater Pond and Crusher Stormwater Pond meet the specified design criteria, because no detailed sizing calculations were included in the Site Water Management Update.

The client requested Golder to indicate concurrence with the application of the design criteria. Concurrence or not by Golder is indicated in the last column of Table 2.
<table>
<thead>
<tr>
<th>Water Control Structure</th>
<th>Design Criteria Established in Volume 1</th>
<th>Criteria Followed?</th>
<th>Golder Concurrence?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pit Diversion Channel</td>
<td>Local PMP Event conveyance</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Pit Stormwater Pond</td>
<td>General PMP Volume</td>
<td>Unknown</td>
<td>NO* + requires further clarification</td>
</tr>
<tr>
<td>Crusher Stormwater Pond</td>
<td>General PMP Volume</td>
<td>Unknown</td>
<td>NO* + requires further clarification</td>
</tr>
<tr>
<td>Permanent Diversion Channel No. 1</td>
<td>Local PMP Event conveyance, 200-yr, 24-hour erosion protection</td>
<td>YES</td>
<td>Why use different criteria? Clarify.</td>
</tr>
<tr>
<td>PWTS Pond and Settling Basin</td>
<td>100-yr, 24-hr event</td>
<td>YES</td>
<td>NO*</td>
</tr>
<tr>
<td>Detention Basin No. 1</td>
<td>Manage General and Local PMP Volume, contain 200-yr, 24-hr</td>
<td>YES</td>
<td>NO*</td>
</tr>
<tr>
<td>Permanent Diversion Channel No. 2</td>
<td>Local PMP Event conveyance, 200-yr, 24-hour erosion protection</td>
<td>YES</td>
<td>Why use different criteria? Clarify.</td>
</tr>
<tr>
<td>Detention Basin No. 2A</td>
<td>Manage General and Local PMP Volume, contain 200-yr, 24-hr</td>
<td>YES</td>
<td>NO*</td>
</tr>
<tr>
<td>Detention Basin No. 2B</td>
<td>Manage General and Local PMP Volume, contain 200-yr, 24-hr</td>
<td>YES</td>
<td>NO*</td>
</tr>
<tr>
<td>Detention Basin No. 3</td>
<td>Manage General and Local PMP Volume, contain 200-yr, 24-hr</td>
<td>YES</td>
<td>NO*</td>
</tr>
<tr>
<td>Waste Rock Storage Area</td>
<td>Detention Pools on benches contain 500-yr, 24-hr event. PCAs capacity for General PMP event</td>
<td>YES</td>
<td>NO*</td>
</tr>
<tr>
<td>North Dry Stack Tailings Facility</td>
<td>Drainage channels and drop structures 500-yr, 24-hr</td>
<td>YES</td>
<td>NO*</td>
</tr>
<tr>
<td>South Dry Stack Tailings Facility</td>
<td>Drainage channels and drop structures 500-yr, 24-hr</td>
<td>YES</td>
<td>NO*</td>
</tr>
<tr>
<td></td>
<td>Depression areas on top of dry stack contain 1000-yr, 24-hr event, berms also on top control larger than general PMP event</td>
<td>YES</td>
<td>NO*</td>
</tr>
<tr>
<td></td>
<td>Larger flows discharged over weir to rock slope leading to flow-through drain</td>
<td>Unknown</td>
<td>Unclear what it meant by larger flows. How is stability ensured?</td>
</tr>
</tbody>
</table>

Note: NO* indicates that the storage volumes should be checked to also contain the maximum saturation event.
4.0 FLOW-THROUGH DRAINS

Goal: Review the design of the Flow-Through Drains and comment on their short- and long-term functional viability.

The purpose of Flow-Through Drains is to convey up-gradient water into the natural drainage downstream of the tailings and waste rock facilities. The Flow-Through Drains are constructed in addition to the typical under drains. The long-term viability of these structures is uncertain due to the potential effects of clogging by sediment. We recommend every effort be made to route water around the structures instead of using the flow-through drains. If this is not possible, then the Flow-Through Drains need to be constructed in a manner by which sediment can be trapped at the inlet and maintenance can be performed. Without an agreement to this maintenance, this structure poses, in our opinion, a fatal flaw.

Golder was requested to specifically comment on the entrance arrangement to the flow-through drains, shown in Figure 2. It is our opinion that sediment from upstream will likely clog the berm over the medium to long term. This is due to the fact that no upstream provision is made to prevent sediment from entering the berm.

![Diagram of Flow-Through Drains](image.png)

FIGURE 2

DETAIL OF THE FLOW-THROUGH INLET

Both the long-term and short-term functionality of the Flow-Through drains are dependent upon the capacity of the upstream ponds. The capacity is based on the incoming runoff, which should be calculated using both PMP and maximum saturation event conditions to crosscheck results. The capacity is also based on the outflow rate, which is calculated using the following equation:
\[Q = \left(\frac{1}{D}\right)^{b+2} \frac{aw}{(3 + b)^{b+2}} (H_{up}^{b+3} - H_{down}^{b+3})^{1/2} \]

Where:

- \(\alpha = \left(\frac{2gu^b}{a(a_{50} - \sigma)^{b-1}}\right)^{1/b+2} \)
- \(D = L - 0.7S_1 \)
- \(S_1 = H_{up}\cot\beta \)

- \(d_{50} \) is the particle diameter size where 50% of the total particles' weight is smaller
- \(a \) and \(b \) are empirical coefficients of the equation related to the flow and particles
- \(U \) is the kinematic viscosity
- \(\sigma \) is the standard deviation of rock size distribution
- \(Q \) is the outflow rate through the rockfill dam structure
- \(H \) is the water depth inside the structure
- \(W \) is the width of the flow cross section
- \(\beta \) is the angle of the upstream and downstream dam face with horizontal
- \(L \) is the length of the dam

It appears this equation was developed to calculate flow through relatively short lengths of rockfill dams. It does not include allowances for losses due to long reaches or bends within the Flow-Through Drain. It is anticipated that the ponded water on the up-gradient portion of the tailings impoundment may not drain as quickly as calculated in the Management Plan.

5.0 REVIEW SITE STORMWATER CONTROLS

Goal: Review the design of the stormwater controls for the Rosemont Ridge Landform, including the Waste Rock Storage Area and Dry Stack Tailings Facility and comment on their short- and long-term functional viability.

5.1 Dry Stack Tailings Facility

The Dry Stack Tailings Facility is broken into North and South facilities with very similar stormwater management designs for each facility. Depressions on top of the North tailings facility contain the 1,000-year, 24-hour storm event before allowing runoff to enter decanting structures and discharge off the tailings facility. Containment berms located on top of the North Dry Stack Tailings Facility have capacity to contain a volume from larger than the General PMP event. Similarly, the South Dry Stack Tailings
Facility has depressed areas to contain runoff from the 10-year, 24-hour event. Larger flows but smaller than the 1,000-year, 24-hour event will be retained behind a rock weir on the west side of the landform. Larger flows than the 1,000-year, 24-hour event will be discharged over the rock weir and will eventually be conveyed to a flow-through drain.

One concern with this type of design is the need for accuracy during construction. If one berm containing the water has a low-lying spot, the entire area of ponded water may escape causing massive erosion should water flow through that low-level spot. Another concern with this design is the estimated magnitude of the required capacity. Golder recommends that the volumes be checked using the maximum saturation event.

The riprap protection on downchutes on the slopes of the tailings facility is designed to convey flow from bench channels to natural ground using the Robinson method. This method was originally developed using, to the best of Golder's knowledge, a maximum *d* 50 of 9 inches. The downchutes for the Rosemont project use rocks with median diameters (*d* 50) between 20-24 inches, which is outside the range of the Robinson method. Additionally, the ratio of normal flow depth to riprap thickness is much lower than 1. This leads to a situation where part of the water will likely flow through the rocks and not on top of them, as per the design intent. This can lead to unexpected failure.

Finally, the design specifies an 8 oz. min. geotextile fabric under the riprap. In Golder's experience, geotextile fabric does not perform well as bedding for riprap on steep slopes. Although, in some cases, riprap-lined chutes are still used on steep slopes, we recommend that its application for closure be reconsidered as such steep channels can be relatively unstable. This is not compatible with the closure demands of long-term stability.

Drainage exiting the Dry Stack Tailings enter existing natural drainages at several points including the permanent diversion channel to the north side of the tailings facility, riprap lined downchutes, and channels flowing along benches. No erosion protection has been identified at these locations. These areas should be analyzed to ensure flow transitions from the engineered channels to the natural drainages without causing erosion to the natural channels.

5.2 Waste Rock Storage Area
Similar to the Dry Stack Tailings Facilities, the Waste Rock Storage Area has designed depression areas to contain a certain storm event. The Waste Rock Storage Area's depression areas contain up to the 500-year, 24-hour storm event. Flows up to the General PMP event will be conveyed to the toe of the storage area and will be retained by perimeter containment areas (PCAs). Conveyance to the PCAs will be by rocked slopes on the 3:1 slopes of the Waste Rock Storage Area. No specifications for the gradation of the rock to be used on the 3:1 slopes were provided.
Concerns with this storage are similar to the Dry Stack Tailings Facility. The design will require tight controls on construction methods to ensure consistent elevations if the berms around all the benches. Additionally, the storage volumes should be checked using the maximum saturation event.

Golder was unable to locate designs for the downchutes on the waste rock storage area. The document indicated a need for riprap, but no structures were designed.

5.3 Perimeter Containment Areas
There is no identified fatal flaw with the perimeter containment areas; however, there is a long-term concern with the lack of outlet from these locations. These may also potentially fill with sediment.

5.4 Water Storage on Waste Rock and Tailings Facilities and Benches
This issue, in our view, is such an unusual application that we wish to emphasize it here. It appears as if the consultant went to a lot of effort to size these facilities to minimize risk. Golder wishes to point out that it is unusual to store large amounts of water on top of waste rock and tailings facilities, and on benches, particularly after closure. It is recommended that appropriate stability calculations be executed to ensure that geotechnical slope failures would not occur and that internal erosion might not lead to failure. Additionally, it is recommended that maintenance measures that will ensure that such containment volumes can be retained in the long term be outlined. Our concern is that a low spot that might develop on a perimeter berm could initiate a release, which can result in significant erosion. Such a low spot can be fairly small, but can lead to a massive release of all the water in the containment area once erosion commences. This may lead to massive failure along the slopes of the waste rock and tailings facilities.

As for storage on the benches, we recommend careful review of potential failure mechanisms. For example: Would it be possible for water to seep into the slope, eventually resulting in internal erosion and eventual failure of the slope? Such an erosion event can act in the same way as outlined in the previous paragraph, leading to a massive release of the water stored on the bench.

6.0 SEDIMENT CONTROLS AND YIELD
Goal: Review the sediment control design and sediment yield calculations and comment on the short- and long-term functional viability of the sediment control system and the applicability of the sediment yield calculations.

6.1 Sediment Yield Calculation Methodology
The method used for the calculation of sediment yield for the site is the Pacific Southwest Inter-Agency Committee (PSIAC) method. This method was developed in 1968 in Southern California and is recommended for basins that are larger than 10 mi2 in size. The baseline and post-mining scenarios analyzed have basin areas of 8.20 mi2 and 1.93 mi2 respectively. Therefore, Golder recommends that the sediment yield calculations be evaluated using a method that is more appropriate for this site.
Additionally, Golder has concerns with the results of the sediment yield calculations. Both baseline and post-mining conditions give the average-annual specific sediment yield as 1.15 acre-feet/mi2/year. It is reasonable to expect that the baseline scenario will differ from the post-mining scenario because the addition of the landform will change the surface conditions. Currently no difference is indicated by the analysis results provided by TetraTech.

Golder produced a report *Rosemont Mine Landforming — Evaluation of Mine Waste Slope Geometry* dated February 17, 2010 wherein it was estimated that the expected erosion from the Rosemont landform surface prior to stabilization will be 14.4 inches. It is anticipated that large amounts of this sediment will report to all areas where water will be ponded. This will therefore reduce the storage capacity of the bench storage areas and perimeter containment areas. Allowance for such storage loss should be made.

6.2 Sediment Control during Operations

The report states that BMPs will be used during operations to manage sediment on the site; however, no specific definitions are described as to the locations and phasing of these sediment controls during operations. The report also calls for concurrent reclamation, which is very difficult in an arid climate. It is recommended that BMPs be defined and that reliance on concurrent reclamation be minimized.

7.0 LANDFORMING

Golder was not requested to comment on the landforming arrangement, but feels compelled to do so as we have developed and estimated the hydraulic and erosion performance of the elements that were used to develop the landforming shape. We recommend that TetraTech develop a table showing adherence to the recommendations previously made by Golder in this regard.

8.0 CONCLUSION

Golder has classified concerns into two categories: red flags and potential fatal flaws associated with the Site Water Management Update. Those findings are summarized in 3.
TABLE 3
RED FLAGS AND POTENTIAL FATAL FLAWS

<table>
<thead>
<tr>
<th>Red Flags</th>
<th>Potential Fatal Flaw</th>
</tr>
</thead>
<tbody>
<tr>
<td>Using smaller precipitation depth (18in) to calculate average annual runoff instead of NRCS recommended depth (24in)</td>
<td>Storage on top of benches is unusual for long-term closure and could lead to massive failure</td>
</tr>
<tr>
<td>No volume check calculations using maximum saturation event conditions</td>
<td>Down chutes on both tailings facility and waste rock can lead to failure as riprap lining may be inappropriate protection type</td>
</tr>
<tr>
<td>No calculations presented for pit diversion channel and pit stormwater pond</td>
<td>Flow-through drains: potential long-term difficulties with maintenance and retaining discharge capacity</td>
</tr>
<tr>
<td>Methodology used for sediment yield calculations should be reviewed as it is believed to be inappropriate</td>
<td>Water storage on top of tailings facility and waste rock dump is unusual for long-term closure and could lead to massive failure</td>
</tr>
<tr>
<td>Lack of drainage from perimeter containment areas</td>
<td>No allowance has been made for anticipated erosion from landforms into storage locations on benches and perimeter containment areas. 14 to 15 inches of erosion is anticipated from the landform areas.</td>
</tr>
<tr>
<td>Demonstrate adherence to geometric recommendations on landform element suggestions previously proposed by Golder</td>
<td></td>
</tr>
<tr>
<td>Lack of detail for sediment control designs during operations</td>
<td></td>
</tr>
<tr>
<td>Specific sediment yield is the same for pre- and post-mining conditions, which appears to be incorrect</td>
<td></td>
</tr>
</tbody>
</table>
ATTACHMENT 2
Rosemont Copper Project
Locator Sheet

Record # 013789 Document Date 2010 11 30

Document Title: Rosemont Site Water Management Update Response

Author/Recipient D. Krizek

Description Responses to the review comments provided to RCC on the "Site Water Management Update" report

Other Notes

This document is located in the following: [CIRCLE THE CATEGORY (from the list below) IN WHICH THIS ITEM IS FILED]

1. Project Management
 a. Formal recommendations & Directions
 b. Formal meeting minutes & memos
 c. General Correspondence
 d. Contracts, Agreements, & MOUs (Rosemont, Udall, SWCA)
 e. Other

2. Public Involvement
 a. Announcements & Public Meetings
 b. Mailing Lists
 c. Scoping Period Comments
 d. Udall Foundation Working Group
 e. Scoping Reports
 f. Comments after Scoping Period
 g. DEIS Public Comments

3. Agency Consultation & Permits
 a. Army Corps of Engineers (404 permit)
 b. US Fish & Wildlife Service (Sec. 7 T&E)
 c. State Historic Preservation Office (Sec. 106)
 d. Tribes (Sec. 106)
 e. Advisory Council on Historic Preservation (Sec. 106)
 f. Other
 g. AZ Dept of Environmental Quality (APP)

4. Communication
 a. Congressional
 b. Cooperating Agencies
 c. Organizations
 d. Individuals
 e. FOIA
 f. Internal
 g. Proponent

5. Proposed Action
 a. Mine Plan (including compilation)
 b. Supporting Documents
 c. Detailed Designs
 d. References

6. Alternatives
 a. Analyzed in Detail
 b. Connected Actions
 c. Dismissed from Detailed Analysis
 d. References

7. Resources
 a. Air Quality & Climate Change
 b. Biological
 c. Dark Skies
 d. Fuels & Fire Management
 e. Hazardous Materials
 f. Heritage
 g. Land Use
 h. Livestock Grazing
 i. Noise & Vibration
 j. Public Health & Safety
 k. Recreation & Wilderness
 l. Riparian
 m. Socioeconomics & Environmental Justice
 n. Soils & Geology
 o. Transportation & Access
 p. Visual
 q. Water

8. Reclamation
 a. Plans & Reports
 b. Notes & Correspondence
 c. References
 d. Other

9. DEIS
 a. DEIS
 b. References

10. FEIS

11. Geospatial Analysis (GIS Data)

12. FOIA Exempt Documents

13. ROD (including BLM & ACOE)